Bis(phenyliodonium) Diyne Triflates PhIC= $C(p - C_6H_4)_n$ C=CIPh • 20Tf and PhIC=C(CH₂),C=CIPh•2OTf: Preparation, Characterization, and **Reaction with Triphenylphosphine[†]**

Peter J. Stang,* Rik Tykwinski, and Viktor V. Zhdankin*

Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112

Received September 26, 1991

Bis(phenyliodonium) divne triflates 8-10 were prepared by the reaction of the corresponding tributyltin substituted diacetylenes 4-6 with cyanophenyliodonium triflate 7 in 78-93% yields as relatively stable microcrystalline solids. They were characterized by multinuclear NMR, IR, and analytical data. Iodonium salts 8-10 reacted with triphenylphosphine under mild conditions with the loss of iodobenzene giving bisphosphonium salts 11,12 in high yields.

The carbon-carbon triple bond represents one of the oldest and most versatile functionalities in organic chemistry. Particularly interesting are molecules with more than one triple bond. Members of this family are of considerable current research activity in the areas of nonlinear optics¹ and organic conductors² as well as new types of antitumor antibiotics.³ Despite active interest in this class of alkynes little is known about simple functionalized divnes that might serve as precursors to the above group of materials and compounds as well as other potentially useful transformations.

Recently, alkynyliodonium salts,⁴ 1, the latest members of the family of tricoordinate iodine(III) species,⁵ have emerged as particularly useful reagents for the preparation of a variety of monofunctionalized acetylenes⁶ and other interesting transformations.^{7,8} Particularly intriguing are the bis(phenyliodonio)acetylene 29 and -diacetylene 39a that serve as novel C_2 - and C_4 -transfer agents. Unfortunately, the considerable instability of 3 limits its widespread application. Hence, we looked for (a) means of stabilizing such conjugated bisiodonium diynes and (b) extension to nonconjugated bisiodonium diynes.

$$\begin{array}{ccc} \text{RC} = & \text{CI}^+\text{Ph} X^- & \text{PhI}^+\text{C} = & \text{CI}^+\text{Ph}\cdot2^-\text{OTf} \\ & & 2 \\ & \text{PhI}^+\text{C} = & \text{C} - & \text{C} = & \text{CI}^+\text{Ph}\cdot2^-\text{OTf} \\ & & 3 \end{array}$$

In this paper we report the preparation, characterization, and some chemical properties of two new types of bis(iodonium) diynes: (a) conjugated, phenylene bridged, systems 8 and (b) various CH_2 as well as an O-bridged systems 9,10.

Results and Discussion

Compounds 8-10 can be prepared by our iodoniumtransfer process^{9,10} starting from cyanophenyliodonium triflate 7 as the transfer agent and the appropriate alkynylstannanes 4-6 (Scheme I). Addition of a CH₂Cl₂ solution of the bistin diacetylene to a stirred suspension of reagent 7 under N₂ at -78 °C with subsequent warming to room temperature results in the rapid formation of a microcrystalline precipitate. Addition of hexanes to complete crystallization followed by filtration under N₂ and washing with dry hexanes affords the corresponding bis-(iodonium) salts 8-10 in 78-93% yield. Phenylene derivatives 8a,b are isolated in the form of pale yellow solids, and compound 8a is relatively stable whereas 8b decomposes in a few hours at room temperature. Compounds **9a-c**, where the two triple bonds are separated by an alkyl

chain, are stable white solids which can be stored without decomposition for several weeks at room temperature or for extended periods in a refrigerator. Iodonium salt 10 containing the ether moiety in its structure turns into an oil at room temperature and is substantially less stable compared with 9.

Bis(iodonium) salts 8-10 are fully characterized by multinuclear NMR, IR, and high-resolution mass spectra, and where stable, by microanalysis. Specifically, in the high-resolution FAB mass spectra the expected molecular peaks $(M - TfO^{-})^{+}$ of the monocationic part of salts 8-10 are observed. In the IR spectra very characteristic intense absorptions for the carbon-carbon triple bonds are observed at 2176-2192 cm⁻¹. The ¹H NMR displays the expected 2:1:2 aromatic resonances between δ 7.6 and 8.3

J., Ed.; ACS Symposium Series 337; American Chemical Society: Washington, DC, 1987. Rice, M. J.; Phillpot, S. R.; Bishop, A. R.; Campbell, D. K. Phys. Rev. B 1986, 34, 4139. Williams, G. R. J. J. Phys. C. Solid State Phys. 1988, 21, 1971.

C. Solid State Phys. 1988, 21, 1971.
(3) Inter Alia: Nishikawa, T.; Isobe, M.; Goto, T. Synlett 1991, 99.
Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715. Porco, J. A., Jr.; Stout, F. J.; Clardy, J.; Schreiber, S. L. Ibid. 1990, 112, 7410. Nicolaou, K. C.; Hwang, C. K.; Smith, A. L.; Wendeborn, S. V. Ibid., 1990, 112, 7416.
(4) Review: Stang, P. J. Angew. Chem., Int. Ed. Engl., in press.
(5) Reviews: Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365. Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431. Merkushev, E. B. Russian Chem. Rev. 1987, 56, 826. Moriarty, R. M.; Prakash, O. Acc. Chem. Res. 1986, 19, 244. Ochiai, M.; Nagao, Y. Kyokai, Yuki Gosie Kagaku Kyeokaishi 1986, 44, 660. Varvoglis, A. Synthesis 1984, 7099.
Koser, G. F. In The Chemistry of Functional Groups, Suppl. D; Patai, S., Rappoport, Z., Eds.; Wiley-Interscience: New York, 1983; Chapters S., Rappoport, Z., Eds.; Wiley-Interscience: New York, 1983; Chapters 18 and 25, pp 721-811 and 1265-1351. Umemoto, T. Kyokai Yuki Gosie Kagaku Kyeokaishi 1983, 41, 251. Varvoglis, A. Chem. Soc. Rev. 1982, 10.377

 (6) Review: Stang, P. J. Acc. Chem. Res., 1991, 24, 304.
 (7) Lodaya, J. S.; Koser, G. F. J. Org. Chem. 1990, 55, 1513. Margida,
 A. J.; Koser, G. F. Ibid. 1984, 49, 4707. Carman, C. S.; Koser, G. F. Ibid. 1983, 48, 2534. Ochiai, M.; Ho, T.; Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem. Soc., Chem. Commun. 1990, 118. Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.; Fujita, E. J. Am. Chem. Soc. 1986, 108, 8281. Ochiai, M.; Kunishima, M.; Sumi, K.; Nagao,

Chem. Soc. 1986, 108, 8281. Ochiai, M.; Kunishima, M.; Sumi, K.; Nagao, Y.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Tetrahedron Lett. 1985, 4501.
(8) Bachi, M. D.; Bar-Ner, N.; Crittell, C. M.; Stang, P. J.; Williamson, B. L. J. Org. Chem. 1991, 56, 3912. Stang, P. J.; Boehstar, M.; Lin, J. J. Am. Chem. Soc. 1986, 108, 7832. Stang, P. J.; Surber, B. W.; Chen, Z. C.; Roberts, K. A.; Anderson, A. G. Ibid. 1987, 109, 228. Stang, P. J.; Kitamura, T. Ibid. 1987, 109, 7561. Stang, P. J.; Boehshar, M.; Wingert, H.; Kitamura, T. Ibid. 1988, 110, 3272. Stang, P. J.; Kitamura, T.; Aiti, A. M.; Wingert, H. Ibid. 1989, 111, 2225. Stang, P. J.; Kitamura, T.; Arif, A. M.; Karny, M.; Apeloig, Y. Ibid. 1990, 112, 374.
(9) (a) Stang, P. J.; Zhdankin, V. V. J. Am. Chem. Soc. 1990, 112, 6437.
(10) Stang, P. J.; Williamson, B. L.; Zhdankin, V. V. J. Am. Chem. Soc. 1991, 113, 5870.

[†]Dedicated to Professor Andrew Streitwieser, Jr., on the occasion of his 65th birthday.

⁽¹⁾ Reviews: Materials for Nonlinear Optics: Chemical Prespectives; Stucky, G. D., Marder, S. R., Sohn, J., Eds.; ACS Symposium Series 455; American Chemical Society: Washington, DC, 1991. Organic Materials for Nonlinear Optics; Hahn, R. A., Bloor, D., Eds.; Spec. Publ. No. 69; The Royal Society of Chemistry: London, 1989. Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D. S., Zyss, J., Eds.; Academic Press: Orlando, FL, 1987; Vols 1 and 2. (2) Reviews: Crystallographically Ordered Polymers, Sandman, D.

^{1991, 113, 5870.}

ppm typical of phenyliodonium salts as well as further characteristic patterns. The ¹³C NMR spectra are all consistent with the proposed structures; specifically, signals for the acetylenic carbons are located at δ 21–36 ppm for the α -carbon and δ 104–111 ppm for the β -carbon which is typical of alkynyliodonium salts.⁴ The presence of the triflate anion in 8–10 is confirmed by ¹⁹F NMR.

Similar to the behavior of iodonium salts 1-3,⁴ bis(iodonium) triflates 8–10 are expected to be reactive toward nucleophiles. Particularly interesting are reactions of alkynyliodonium salts with triphenylphosphine resulting in alkynylphosphonium salts as the major products,^{9,11} which are valuable Michael acceptors and precursors to synthetically useful substituted vinylphosphonium species.¹¹

We examined the reactions of the relatively stable and crystalline salts 8a,b and 10a-c with triphenylphosphine in CH₂Cl₂ (Scheme II). The reactions (Scheme II) are complete in under an hour at room temperature and give the corresponding diphosphonium salts 11,12 in 67-90% yield as well as the expected iodobenzene. Phosphonium salts 11,12 are isolated from the reaction mixture as yellow hygroscopic oils or solids and are fully characterized by multinuclear NMR, IR, and high-resolution mass spectra. The high-resolution FAB mass spectra in all cases display the expected molecular peaks $(M - TfO^{-})^{+}$ of the monocationic part of salts 11,12. In the IR spectra, intense carbon-carbon triple bond signals are observed at 2205-2171 cm⁻¹. In the ³¹P NMR, singlets at δ 6-8 ppm indicate the presence of an acetylenic phosphonium species.¹² The ¹H NMR and ¹³C NMR spectra are all consistent with the proposed structures; signals for the acetylenic carbons are located at δ 62-73 ppm for the α -carbon and δ 125–126 ppm for the β -carbon with C–P

coupling constants of 189–190 and 30–31 Hz, respectively. The presence of the triflate anion in 11,12 is confirmed by 19 F NMR.

In conclusion, bisalkynyl bis(phenyliodonium) triflates (8-10) can be prepared by the reaction of the corresponding tributyltin-substituted diacetylenes (4-6) with cyanophenyliodonium triflate 7 in high isolated yields as relatively stable microcrystalline solids. Iodonium salts 8-10 react with triphenylphosphine under mild conditions with the loss of iodobenzene and the formation of novel bisphosphonium salts 11,12 in high yields. We believe that these readily available, new, bis(iodonio)dialkynes will serve as useful precursors for a variety of transformations involving diynes.

Experimental Section

General Methods. Melting points (uncorrected) were obtained with a Mel-Temp capillary melting point apparatus. Infrared spectra were recorded on a Mattson FT-IR spectrophotometer. NMR spectra were recorded on a Varian XL 300 spectrometer at 300 (¹H NMR), 75 (¹³C NMR), 121 (³¹P NMR), and 282 MHz (¹⁹F NMR). Chemical shifts for ¹H and ¹³C NMR are reported in parts per million (ppm) relative to internal tetramethylsilane or the proton resonance due to the residual protons in the deuteriated NMR solvent; the chemical shifts for ¹⁹F and ³¹P NMR are relative to external CFCl₃ and 85% H₃PO₄, respectively. Mass spectra were obtained with a VG Micromass 7050E double focusing high-resolution mass spectrometer with the VG data system 2000 under positive ion fast atom bombardment (FAB) conditions at 8 keV. 3-Nitrobenzyl alcohol was used as a matrix in CH₂Cl₂ or CHCl₃ as solvent, and polypropylene glycol was used as a reference for peak matching. Microanalysis were performed by Atlantic Microlab Inc, Norcross, GA.

Materials. All commercial reagents were ACS reagent grade and used without further purification. [Cyano](trifluoromethanesulfonyl)oxy]iodo]benzene 7 was prepared from iodosobenzene, trimethylsilyl triflate, and trimethylsilyl cyanide by a known procedure.^{9b,13} Bis(tributyltin)diacetylenes 4-6 were prepared by a known method^{14,15} from the corresponding di-

⁽¹¹⁾ Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Fujita, E. J. Chem. Soc., Chem. Commun. 1987, 1708.
(12) The typical ³¹P chemical shift for alkynyl monophosphonium salts

⁽¹²⁾ The typical ³¹P chemical shift for alkynyl monophosphonium salts is δ 5-8 ppm: Bestmann, H. J.; Kisielowski, L. Chem. Ber. 1983, 116, 1320.

⁽¹³⁾ Zhdankin, V. V.; Crittell, C. M.; Stang, P. J.; Zefirov, N. S. Tetrahedron Lett. 1990, 31, 4828.

Bis(phenyliodonium) Diyne Triflates

acetylenes, *n*-butyllithium, and tributyltin chloride. 1,5-Hexadiyne, 1,7-octadiyne, and 1,8-nonadiyne were purchased from Aldrich and 1,4-diethynylbenzene purchased from Farchan. 4,4'-Diethynylbiphenyl was prepared by the method of Wright,¹⁵ bis(propargyl) ether was synthesized by a known procedure.¹⁶ All solvents used were dried by distillation over CaH₂. The reaction flasks were flame-dried and flushed with nitrogen.

General Procedure for Synthesis of Bis(alkynyl) Bis-(phenyliodonium) Triflates. A solution of the appropriate bis(tributyltin)diacetylene 4–6 (5 mmol) in CH₂Cl₂ (20 mL) was added to a stirred suspension of reagent 7 (3.79 g, 10 mmol) in CH₂Cl₂ (100 mL) at -78 °C under nitrogen. The mixture was allowed to warm to 0 °C and stirred for 10 min until the formation of a white microcrystalline precipitate. Hexane was added to complete precipitation, and the solid was filtered under nitrogen, washed with dry hexane (100 mL), and dried in vacuo. Analytically pure materials were obtained by recrystallization from a concentrated solution of the iodonium salt in CH₃CN by addition of CH₂Cl₂ and ether.

1,4-Bis[[phenyl](trifluoromethanesulfonyl)oxy]iodo]ethynyl]benzene (8a). Reaction of 1,4-bis[(tributylstannyl)ethynyl]benzene (4a) (3.27 g, 4.65 mmol) with reagent 7 (3.52 g, 9.30 mmol) gave 3.18 g (82%) of 8a as a pale yellow microcrystalline solid, mp 144–146 °C dec: IR (CCl₄) 3082, 3064, 2176 (C=C), 1298, 1218, 1157, 1022 cm⁻¹; ¹H NMR (CD₃CN) δ 8.21 (d, J = 8.2 Hz, 4 H), 7.76 (t, J = 8.0 Hz, 2 H), 7.61 (t, J = 8.1Hz, 4 H), 7.58 (s, 4 H); ¹⁹F NMR (CD₃CN) δ -78.65 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 135.7, 134.0, 133.9, 133.4, 122.9, 117.7 (all Ar), 121.1 (q, J = 318 Hz, CF₃SO₃⁻), 105.3 (C=CI⁺), 36.4 (C=CT⁺); FAB HRMS m/z 680.869 119 (M – CF₃SO₃⁻)⁺, calcd for C₂₃-H₁₄F₃J₂O₃S 680.870 280. Anal. Calcd for C₂₄H₁₄F₆J₂O₆S₂: C, 34.72; H, 1.70; S, 7.72. Found: C, 34.71; H, 1.68; S, 7.76.

4,4'-Bis[[phenyl](trifluoromethanesulfonyl)oxy]iodo]ethynyl]biphenyl (8b). Reaction of 1,4-bis[(tributylstannyl)ethynyl]biphenyl (4b) (3.90 g, 5.0 mmol) with reagent 7 (3.79 g, 10.0 mmol) gave 4.17 g (92%) of 8b as a pale yellow microcrystalline solid, mp 85-86 °C dec: IR (CCl₄) 3082, 3068, 2171 (C=C), 1288, 1243, 1173, 1021 cm⁻¹; ¹H NMR (DMSO-d₆/CDCl₃) δ 8.23 (d, J = 7.8 Hz, 4 H), 7.56-7.76 (m, 14 H); ¹⁹F NMR (CD₃CN) δ -78.39 (s, CF₃SO₃⁻); ¹³C NMR (DMSO-d₆/CDCl₃) δ 141.3, 134.1, 133.1, 132.1, 131.8, 127.0, 119.2, 118.3 (all Ar), 121.1 (q, J = 318Hz, CF₃SO₃⁻), 103.3 (C=CI⁺), 40.0 (C=CI⁺). Anal. Calcd for C₃₀H₁₈F₆I₂O₆S₂: C, 39.75; H, 1.99; S, 7.07. Found: C, 39.03; H, 2.25; S, 6.94.

1,6-Bis[phenyl[(trifluoromethanesulfonyl)oxy]iodo]-1,5hexadiyne (9a). Reaction of 1,6-bis(tributylstannyl)-1,5-hexadiyne (5a) (1.90 g, 2.90 mmol) with reagent 7 (2.20 g, 5.80 mmol) gave 2.05 g (90%) of 9a as a white microcrystalline solid, mp 141-143 °C dec: IR (CCl₄) 3084, 2927, 2192 (C=C), 1291, 1211, 1177, 1163, 1021 cm⁻¹; ¹H NMR (CD₃CN) δ 8.11 (d, J = 7.5 Hz, 4 H), 7.74 (t, J = 7.3 Hz, 2 H), 7.59 (t, J = 7.8 Hz, 4 H), 2.82 (s, 4 H); ¹⁹F NMR (CD₃CN) δ -78.59 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 135.4, 133.8, 133.2, 117.0 (all Ph), 121.1 (q, J = 318 Hz, CF₃SO₃⁻), 108.1 (C=CI⁺), 23.9 (C=CI⁺), 20.2 (CH₂); FAB HRMS m/z632.869 331 (M - CF₃SO₃⁻)⁺, calcd for C₁₉H₁₄F₃I₂O₃S 632.870 279. Anal. Calcd for C₂₀H₁₄F₆I₂O₆S₂: C, 30.69; H, 1.81. Found: C, 30.29; H, 1.80.

1,8-Bis[phenyl[(trifluoromethanesulfonyl)oxy]iodo]-1,7octadiyne (9b). Reaction of 1,8-bis(tributylstannyl)-1,7-octadiyne (5b) (3.60 g, 5.27 mmol) with reagent 7 (4.10 g, 10.8 mmol) gave 4.00 g (93%) of 9b as a white microcrystalline solid, mp 163–168 °C dec: IR (CCl₄) 3082, 2933, 2183 (C=C), 1229, 1159, 1025 cm⁻¹; ¹H NMR (CD₃CN) δ 8.1 (d, J = 7.6 Hz, 4 H), 7.7 (t, J = 7.3 Hz, 2 H), 7.5 (t, J = 7.6 Hz, 4 H), 2.5 (t, J = 6.6 Hz, 4 H), 1.5 (t, J= 6.6 Hz, 4 H); ¹⁹F NMR (CD₃CN) δ -78.65 (s, CF3SO₃⁻); ¹³C NMR (CD₃CN) δ 135.4, 133.8, 133.2, 117.0 (all Ph), 121.4 (q, J = 318 Hz, CF₃SO₃⁻), 111.1 (C=CI⁺), 27.1 (CH₂), 21.8 (C=CI⁺), 20.35 (CH₂); FAB HRMS m/z 660.899 94 (M - CF₃SO₃⁻)⁺, calcd for C_{21H18}F₃I₂O₃S 660.901 66. Anal. Calcd for C_{22H18}F₆I₂O₆S₂: C, 32.58; H, 2.24. Found: C, 32.63; H, 2.28. **1,9-Bis[phenyl[(trifluoromethanesulfonyl)oxy]iodo]-1,8-nonadiyne (9c).** Reaction of 1,9-bis(tributylstannyl)-1,8-hexadiyne (5c) (3.69 g, 5.29 mmol) with reagent 7 (4.0 g, 10.6 mmol) gave 3.92 g (90%) of 9c as a white microcrystalline solid, mp 134–136 °C dec: IR (CCl₄) 3080, 2951, 2187 (C=C), 1291, 1216, 1162, 1025 cm⁻¹; ¹H NMR (CD₃CN) δ 8.12 (d, J = 7.6 Hz, 4 H), 7.74 (t, J = 7.3 Hz, 2 H), 7.60 (t, J = 7.8 Hz, 4 H), 2.56 (t, J = 6.8 Hz, 4 H), 1.40 (dt, J = 6.8 Hz, 4 H), 1.37 (m, 2 H): ¹⁹F NMR (CD₃CN) δ -78.65 (s, CF₃SO₃-); ¹³C NMR (CD₃CN) δ 135.4, 133.7, 133.1, 117.0 (all Ph), 121.3 (q, J = 318 Hz, CF₃SO₃-), 111.5 (C=CI⁺), 28.1 (CH₂), 27.5 (CH₂), 21.6 (C=CI⁺), 20.7 (CH₂); FAB HRMS m/z 674.91654 (M - CF₃SO₃⁻)⁺, calcd for C₂₂H₂₀F₃I₂O₃S 674.917 31.

Bis[phenyl[(trifluoromethanesulfonyl)oxy]iodo] Bis-(propargyl) Ether (10). Reaction of bis(tributylstannyl) bis-(propargyl) ether (6) (0.67 g, 1.0 mmol) with reagent 7 (0.75 g, 2.0 mmol) resulted in precipitation of compound 10 as an unstable oil, yield 0.62 g (78%): IR (neat) 3085, 3063, 2973, 2188 (C=C), 1563, 1261, 1233, 1171, 1024 cm⁻¹; ¹H NMR (CD₃CN) δ 8.16 (d, J = 7.8 Hz, 4 H), 7.7 (t, J = 7.6 Hz, 2 H), 7.5 (t, J = 8.0 Hz, 4 H), 4.5 (s, 4 H); ¹⁹F NMR (CD₃CN) δ -78.54 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 135.9, 134.2, 133.5, 117.2 (all Ph), 120.9 (q, J = 319Hz, CF₃SO₃⁻), 104.0 (C=CI⁺), 58.9 (CH₂), 31.6 (C=CI⁺); FAB HRMS m/z 648.863 298 (M – CF₃SO₃⁻)⁺, calcd for C₁₉H₁₄F₃I₂O₄S 648.865 794.

General Procedure for the Reaction of Bis(phenyliodonium) Diyne Triflates with Triphenylphosphine. Triphenylphosphine (2 mmol) was added to a stirred suspension of the corresponding iodonium salt 8–10 (1 mmol) in CH_2Cl_2 (20 mL) at -78 °C under nitrogen. The mixture was allowed to warm to room temperature and stirred for 0.5 h, and then the solvent was removed by evaporation and the residue (an oil or a solid) washed with ether (50 mL) and dried in vacuo. Isolated solids could then be recrystallized from CH_2Cl_2 and ether.

1,4-Bis[[triphenyl](trifluoromethanesulfonyl)oxy]phosphoranyl]ethynyl]benzene (11a). Reaction of 8a (0.30 g, 0.36 mmol) with Ph₃P (0.19 g, 0.73 mmol) gave 0.32 g (94%) of 11a as a yellow solid, mp >250 °C dec: IR (CCl₄) 3087, 3065, 3043, 2171 (C=C), 1226, 1187, 1017 cm⁻¹; ¹H NMR (CD₃CN) δ 8.04 (m, 4 H), 7.9–7.6 (m, 30 H); ¹⁹F NMR (CD₃CN) δ –78.04 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 137.04, 134.67 (d, J_{C-P} = 12.7 Hz), 131.60 (d, J_{C-P} = 13.9 Hz), 122.54 (d, J_{C-P} = 4.4 Hz) (all Ar), 122.12 (q, J = 321.9 Hz, CF₃SO₃⁻), 118.98 (d, J_{C-P} = 100.4 Hz, ipso), 116.5 (d, J_{C-P} = 30.5 Hz, C=CP⁺), 73.40 (d, J_{C-P} = 184.2 Hz, C=CP⁺); ³¹P NMR (CD₃CN) δ 8.22 (s, Ph₃P⁺); FAB HRMS m/z 797.167 20 (M - CF₃SO₃⁻)⁺, calcd for C₄₇H₃₄F₃O₃P₂S 797.165 59.

4.4'-Bis[[triphenyl](trifluoromethanesulfonyl)oxy]phosphoranyl]ethynyl]biphenyl (11b). Reaction of 8b (0.070 g, 0.077 mmol) with Ph₃P (0.040 g, 0.15 mmol) gave 0.06 g (76%) of 11b as a yellow oil: IR (CCl₄) 3060, 2172 (C=C), 1261, 1224, 1156, 1030 cm⁻¹; ¹H NMR (CD₃CN) δ 7.9–7.6 (m); ¹⁹F NMR (CD₃CN) δ –78.69 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 144.18, 136.78 (d, J_{C-P} = 3.0 Hz), 135.58, 135.06 (d, J_{C-P} = 1.9 Hz), 134.45 (d, J_{C-P} = 12.3 Hz), 131.41 (d, J_{C-P} = 14.2 Hz), 128.78, (all Ar), 122.11 (q, J = 321.9 Hz, CF₃SO₃⁻), 118.91 (d, J_{C-P} = 100.3 Hz, ipso) 117.73 (d, J_{C-P} = 30.1 Hz, C=CP⁺), 71.04 (d, J_{C-P} = 187.1 Hz, C=CP⁺); ³¹P NMR (CD₃CN) δ 8.09 (s, Ph₃P⁺); FAB HRMS *m/z* 873.196171 (M - CF₃SO₃⁻)⁺, calcd for C₅₃H₃₈F₃O₃P₂S 873.196905.

1,6-Bis[triphenyl](trifluoromethanesulfonyl)oxy]phosphoranyl]-1,5-hexadiyne (12a). Reaction of 9a (0.30 g, 0.38 mmol) with Ph₃P (0.20 g, 0.76 mmol) gave 0.238 g (70%) of 11b as a yellow oil: IR (CCL) 3063, 2959, 2929, 2205 (C==C), 1223, 1151, 1059, 1029 cm⁻¹; ¹H NMR (CD₃CN) δ 7.9-7.6 (m, 30 H), 3.28 (d, J_{P-H} = 1.8 Hz, 4 H); ¹⁹F NMR (CD₃CN) δ -78.04 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 136.84, 134.27 (d, J_{C-P} = 12.4 Hz), 131.47 (d, J_{C-P} = 14.1 Hz) (all Ph), 122.00 (d, J_{C-P} = 31 Hz, C==CP⁺), 122.1 (q, J = 322 Hz, CF₃SO₃⁻), 119.18 (d, J_{C-P} = 100.3 Hz, ipso), 63.57 (d, J_{C-P} = 186.8 Hz, C==CP⁺), 19.84 (CH₂); ³¹P NMR (CD₃CN) δ 6.82 (s, Ph₃P⁺); FAB HRMS m/z 749.265 968 (M – CF₃SO₃⁻)⁺, calcd for C₄₃H₃₄F₃O₃P₂S 749.265 604.

1,8-Bis[triphenyl](trifluoromethanesulfonyl)oxy]phosphoranyl]-1,7-octadiyne (12b). Reaction of **9b** (0.41 g, 0.51 mmol) with Ph₃P (0.28 g, 1.10 mmol) gave 0.316 g (67%) of 11b as a cream yellow microcrystalline solid, mp 165–167 °C dec: IR (CCl₄) 3087, 3063, 2958, 2198 (C=C), 1223, 1188, 1077, 1029 cm⁻¹; ¹H NMR (CD₃CN) δ 7.9–7.6 (m, 30 H), 2.86 (m, 4 H), 1.9 (m, 4

⁽¹⁴⁾ Cauletti, C.; Furlani, C.; Sebold, A. Gazz. Chim. Ital. 1988, 118, 1.

⁽¹⁵⁾ Wright, M. E. Macromolecules 1989, 22, 3256.

⁽¹⁶⁾ Brandsma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam, 1971.

H); ¹⁹F NMR (CD₃CN) δ -78.61 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 136.35, 133.28 (d, $J_{C-P} = 12.8$ Hz), 131.13 (d, $J_{C-P} = 13.7$ Hz) (all Ph), 125.20 (d, $J_{C-P} = 31.2$ Hz, C=CP⁺), 121.82 (q, J = 320 Hz, CF₃SO₃⁻), 119.4 (d, $J_{C-P} = 100.1$ Hz, ipso), 61.97 (d, $J_{C-P} = 189.6$ Hz, C=CP⁺), 26.77 (CH₂), 20.63 (d, $J_{C-P} = 3.8$ Hz, CH₂); ³¹P NMR (CD₃CN) δ 6.80 (s, Ph₃P⁺); FAB HRMS m/z 777.19702 (M - CF₃SO₃⁻)⁺, calcd for C₄₅H₃₈F₃O₃P₂S 777.196 89.

1,9-Bis[triphenyl](trifluoromethanesulfonyl)oxy]phosphoranyl]-1,8-nonadiyne (12c). Reaction of **9c** (0.20 g, 0.24 mmol) with Ph₃P (0.13 g, 0.50 mmol) gave 0.176 g (78%) of **12c** as a yellow oil: IR (CCl₄) 3084, 3064, 2935, 2202 (C=C), 1224, 1188, 1031 cm⁻¹; ¹H NMR (CD₃CN) δ 7.9–7.6 (m, 30 H), 2.77 (m, 4 H), 1.80 (m, 4 H), 1.59 (m, 2 H); ¹⁹F NMR (CD₃CN) δ -78.65 (s, CF₃SO₃⁻); ¹³C NMR (CD₃CN) δ 136.39 (d, $J_{C-P} = 2.8$ Hz), 134.01 (d, $J_{C-P} = 12.8$ Hz), 131.13 (d, $J_{C-P} = 13.9$ Hz) (all Ph), 125.68 (d, $J_{C-P} = 31.0$ Hz, C=CP⁺), 121.8 (q, J = 320 Hz, CF₃SO₃⁻), 119.49 (d, $J_{C-P} = 100.6$ Hz, ipso), 61.77 (d, $J_{C-P} = 190.5$ Hz, C=CP⁺), 28.77 (CH₂), 26.91 (CH₂), 20.99 (d, $J_{C-P} = 3.5$ Hz, CH₂); ³¹P NMR (CD₃CN) δ 6.69 (s, Ph₃P⁺); FAB HRMS m/z 791.21245 (M – CF₃SO₃⁻)⁺, calcd for C₄₆H₄₀F₃O₃P₂S 791.21254.

Acknowledgment. This work was supported by the NCI of NIH (2ROCA16903).

Registry No. 4a, 122482-73-9; 46, 138877-31-3; 5a, 138877-32-4; 5b, 138877-33-5; 5c, 138877-34-6; 6, 138877-35-7; 7, 138877-36-8; 8a, 138877-37-9; 8b, 138877-39-1; 9a, 138877-41-5; 9b, 138877-43-7; 9c, 138877-45-9; 10, 138877-47-1; 11a, 138877-49-3; 11b, 138877-51-7; 12a, 138877-53-9; 12b, 138877-55-1; 12c, 138877-57-3; Ph_3P , 603-35-0.

Supplementary Material Available: ¹H and ¹³C NMR spectra of all compounds for which elemental analyses were not obtained (14 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Stereoselective Synthesis of β-Lactams by Oxidative Coupling of Dianions of Acyclic Tertiary Amides[†]

Takeo Kawabata,[†] Tatsuya Minami, and Tamejiro Hiyama*

Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

Received September 4, 1991

Tertiary amides RCH₂CON(R')CH₂Z, where Z is an electron-withdrawing group, were converted into dianions by treatment with 2 equiv of *n*-butyllithium or *tert*-butyllithium, and the dianions were oxidized with *N*iodosuccinimide (NIS) or a Cu(II) carboxylate to form β -lactams stereoselectively. The stereochemistry of β -lactam formation depends on the oxidant; NIS is cis-selective, whereas Cu(II) is nonselective or slightly trans-selective. A high degree of asymmetric induction in the formation of β -lactams was achieved by using (*R*)-1-phenylethylamine as a chiral auxiliary. This asymmetric ring closure was applied to the preparation of *cis*- β -lactam 31, an intermediate for the synthesis of the monobactam antibiotic carumonam.

Introduction

During the last few decades, numerous publications have • appeared on the synthesis of β -lactams.¹ The reactions employed for forming the azetidinone ring can be roughly classified as follows:² (i) ketene-imine [2 + 2] cycloaddition, (ii) olefin-isocyanate [2 + 2] cycloaddition, (iii) aldol-type reactions of an ester enolate with an imine, (iv) intramolecular condensation of a β -amino acid, (v) intramolecular substitution of a β -hetero-substituted amide, and (vi) cyclization of an α,β -epoxy amide. All these methods involve substrate control; i.e., the stereochemistry of β lactam formation is controlled by the structure of a precursor. Accordingly, β -lactams of undesired stereochemistry can be produced from some precursors.³ We have been exploring a new method which allows us to control the stereochemistry of ring formation by proper choice of a reagent (reagent control). This paper details the synthesis of β -lactams through an intramolecular oxidative coupling of dianions generated from acyclic tertiary amides,⁴ wherein the choice of oxidant is crucial for the control of stereochemistry.

The basic concept of the present reaction is summarized in Scheme I. An amide $RCH_2CON(R')CH_2Z$, wherein R and R' are substituents or protecting groups and Z is an electron-withdrawing group, is converted into the corre-

sponding dianion with 2 molar equiv of base. Intramolecular oxidative coupling of the dianion gives the desired

 $^{^{\}dagger}\textsc{Dedicated}$ to Professor Hitosi Nozaki on the occasion of his 70th birthday.

[‡]Present address: Institute of Chemical Research, Kyoto University, Uji, Kyoto 611, Japan.

 ⁽a) Morin, R. B.; Gorman, M. Chemistry and Biology of β-Lactam Antibiotics; Academic Press: New York, 1982; Vol. 1-3.
 (b) Dürckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K. H. Angew. Chem., Int. Ed. Engl. 1985, 24, 180.

^{(2) (}a) Manhas, M. S.; Bose, A. K. β-Lactams, Natural and Synthetic;
Wiley: New York, 1971. (b) Mukerjee, A. K.; Srivastava, R. C. Synthesis
1973, 327. (c) Mukerjee, A. K.; Singh, A. K. Tetrahedron 1978, 34, 1731.
(d) Hirai, K. Yuki Gosei Kagaku Kyokai Shi 1980, 38, 97. (e) Koppel,
G. A. The Chemistry of Heterocyclic Compounds; Wiley: New York,
1983; Vol. 42, Part 2, pp 219-441. (f) Davies, D. E.; Storr, R. C. Comprehensive Heterocyclic Chemistry; Pergamon Press: Oxford, 1984; Vol.
7, pp 237-284. (g) Nagahara, T.; Kametani, T. Heterocycles 1987, 25, 729.